
KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

Jens Kehne | Marius Hillenbrand

Operating Systems Group, Department of Computer Science

www.kit.edu

Microkernel Construction
I.4 – IPC Functionality & Interface

Lecture Summer Term 2017

Wednesday 15:45-17:15 R 131, 50.34 (INFO)

Operating Systems Group

Department of Computer Science

2 17.05.2017

IPC Primitives

Send to
(a specified thread)

Receive from
(a specified thread)

Receive
(from any thread)

Two threads
communicate

No interference from
other threads

Other threads block
until it’s their turn

Problem
How to communicate
with a thread unknown
a priori
(e.g., a server’s clients)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

3 17.05.2017

IPC Primitives

Send to
(a specified thread)

Receive from
(a specified thread)

Receive
(from any thread)

Call
(send to, receive from specified thread)

Send to & Receive (from)
(send to, receive from any/specified

thread)

Scenario

A client thread sends a
message to a server
expecting a response

The server replies expecting
the client thread to be ready
to receive

Problem

The client might be
preempted between the send
to and receive from

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

4 17.05.2017

IPC Primitives

Send to
(a specified thread)

Receive from
(a specified thread)

Receive
(from any thread)

Call
(send to, receive from specified thread)

Send to & Receive (from)
(send to, receive from any/specified

thread)

Send async to
(a specified thread)

Scenario
Thread A wants to
notify thread B of an
event (e.g., interrupt)

Thread B does not need
to process the event
right away

Problem
With synchronous IPC,
thread A has to block
until thread B is ready

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

5 17.05.2017

Message Types

Registers
Short messages, avoid memory during IPC

Guaranteed to avoid user-level page faults during IPC

Strings (optional)

In-memory messages copied from sender to receiver

May incur user-level page faults during copy operation

Mappings (optional)

Messages that map pages from sender to receiver

Can map other resources too (e.g., capabilities)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

6 17.05.2017

IPC – API

Operations

Send to

Receive from

Receive

Call

Send to & Receive

Send to & Receive from

Send async

Message Types

Registers

Strings

Mappings

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

7 17.05.2017

IPC Parameters

Send to

Receive from

Receive

Call

Send to & Receive

Send to & Receive from

Destination endpoint

Source endpoint

Send registers

Receive registers

Number of map pages

Page range for each map page

Number of send strings

Send string start for each string

Send string size for each string

Receive window for mappings

Number of receive strings

Receive string start for each string

Receive string size for each string

Send timeout

Receive timeout

Send xfer timeout

Receive xfer timeout

IPC result code

Sender endpoint

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

8 17.05.2017

Ideally Encoded in Registers

Parameters in registers whenever possible

Make frequent operations simple and fast

EAX

ECX

EDX

EBX

EBP

ESI

EDI

Sender Registers Receiver Registers

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

9 17.05.2017

Send and Receive Encoding

0 (Nil ID) is a reserved thread ID

Define -1 as a wildcard thread ID

ECX

EBX

EBP

ESI

EDI

Sender Registers Receiver Registers

receive specifier

destination EAX

EDX

 Nil ID means “no send
operation”

 Wildcard is not allowed

(no broadcast support)

 Nil ID means “no receive
operation”

 Wildcard means “receive
from any thread”

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

10 17.05.2017

Why Use a Single Call Instead of Many?

The implementation of the individual send and
receive is very similar to the combined send and
receive

We can use the same code
We reduce cache footprint of the code

We make applications more likely to be in cache

L4 only implements combined ɀsend to A and
receive from BɁ syscall

A may but need not be equal to B

A or B may be 0 to avoid a send or receive phase
A == B == 0 is just a costly no-operation

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

11 17.05.2017

IPC endpoints

How do we specify the destination of an IPC message?

Idea 1: Use thread ID

Problem: Must specify exactly one receiver

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Client Server

Server

Server

? Load-

balancer

Operating Systems Group

Department of Computer Science

12 17.05.2017

IPC gates

Idea 2: Decouple IPC endpoints from threads

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Client Server

IPC gate Capability

cap.send(payload)
gate.receive()

Operating Systems Group

Department of Computer Science

13 17.05.2017

IPC gates

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Client Server

IPC gate Capability

Server

Server

Operating Systems Group

Department of Computer Science

14 17.05.2017

IPC Parameters

Send to

Receive from

Receive

Call

Send to & Receive

Send to & Receive from

Destination endpoint

Source endpoint

Send registers

Receive registers

Number of map pages

Page range for each map page

Number of send strings

Send string start for each string

Send string size for each string

Receive window for mappings

Number of receive strings

Receive string start for each string

Receive string size for each string

Send timeout

Receive timeout

Send xfer timeout

Receive xfer timeout

IPC result code

Sender endpoint

 IPC syscall

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

15 17.05.2017

Message Transfer

Assume that 64 extra registers are available

Name them MR0 … MR63 (message register 0 … 63)
Only used message registers are transferred during IPC
(see MR0)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

16 17.05.2017

IPC Parameters

Send to

Receive from

Receive

Call

Send to & Receive

Send to & Receive from

Destination endpoint

Source endpoint

Send registers

Receive registers

Number of map pages

Page range for each map page

Number of send strings

Send string start for each string

Send string size for each string

Receive window for mappings

Number of receive strings

Receive string start for each string

Receive string size for each string

Send timeout

Receive timeout

Send xfer timeout

Receive xfer timeout

IPC result code

Sender endpoint

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

17 17.05.2017

Message Construction

Messages are stored in
registers (MR0 MR63)

First register (MR0) acts
as message tag

Subsequent registers
contain

Untyped words (u)

Typed words (t)
(e.g., map item, string item) label flags t u MR0

Message Tag

Various IPC flags

Number of typed

words

Number of

untyped words

Freely available

(e.g., request type)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

18 17.05.2017

Message Construction

label flags t u MR0

Message

MR8

MR7

MR6

MR5

MR4

5

MR2

MR3

MR1

3

Messages are stored in
registers (MR0 MR63)

First register (MR0) acts
as message tag

Subsequent registers
contain

Untyped words (u)

Typed words (t)
(e.g., map item, string item)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

19 17.05.2017

Message Construction

Typed items occupy one
or more words

Four common item
types

Map item (2 words)

Grant item (2 words)

String item (2+ words)

Capability (2 words)

Typed items can have
arbitrary order

label flags t u MR0

Message

MR2

MR3

MR1

3

MR8

MR7

MR6

MR5

MR4

5

Map Item

String Item

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

20 17.05.2017

Map and Grant Items

Two words

Send base

Fpage

Lower bits of send base
indicates map or grant
item

send base

send fpage

0 100C

Map Item

send base

send fpage

0 101C

Grant Item

location size t 0wrx

Fpage

MRi

MRi+1

MRi

MRi+1

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

21 17.05.2017

String Items

Up to 4 MB (per string)

Compound strings
supported

Allows scatter-gather

Incorporates cacheability
hints

Reduce cache pollution
for long copy operations string length

string pointer

String Item

c 0 0hhC MRi

MRi+1

“hh” indicates cacheability

hints for the string

E.g., only use L2 cache,

or do not use cache at all

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

22 17.05.2017

String Items

string length

string pointer

String Item

0 0 0hhC MRi

MRi+1

1

string length

string pointer

0 0 0hhC MRi+j+1

MRi+j+2

string pointer

k - 1

MRi+j+3 string pointer

MRi+j+1+k

j - 1

string pointer

j - 1

MRi+2 string pointer

MRi+j

k - 1

1

All substrings are of

same size

Different size compound

strings require a new

string specifier

New string specifier

may of course contain

substrings

“hh” indicates cacheability
hints for the string

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

23 17.05.2017

IPC Parameters

Send to

Receive from

Receive

Call

Send to & Receive

Send to & Receive from

Destination endpoint

Source endpoint

Send registers

Receive registers

Number of map pages

Page range for each map page

Number of send strings

Send string start for each string

Send string size for each string

Receive window for mappings

Number of receive strings

Receive string start for each string

Receive string size for each string

Send timeout

Receive timeout

Send xfer timeout

Receive xfer timeout

IPC result code

Sender endpoint

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

24 17.05.2017

String Reception

Assume that 34 extra registers are available

Name them BR0 … BR33 (buffer register 0 … 33)
Buffer registers specify

Receive strings

Receive window for mappings

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

25 17.05.2017

Receiving Messages

Receiver buffers are specified
in registers (BR0 … BR33)

First BR (BR0) contains
ɀAcceptorɁ

May specify receive window (if
not nil-fpage)

May indicate presence of
receive strings/buffers
(if s-bit set)

Acceptor

receive window 000s BR0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

26 17.05.2017

Receiving Messages

Acceptor

receive window 000s BR0

string length

string pointer

0 0 0hhC BR1

BR2

0001

The s-bit set indicates presence

of string items acting as receive

buffers

string length

string pointer

0 0 0hhC BR3

BR4

0hh1

If C-bit in string item is set, it

indicates presence of more

receive buffers

string pointer

j - 1

BR5 string pointer

BR3+j

A receive buffer can of course

be a compound string

If C-bit in string item is cleared,

it indicates that no more

receive buffers are present

0hh0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

27 17.05.2017

Receiving asynchronous messages

Kernel must buffer asynchronous messages

Assume that 1 extra register is available

Limit message payload to 1 register (MR1)

ORed to receive register

Two ways to receive:

Synchronously (block on specific bit mask)

Asynchronously (read register)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

28 17.05.2017

IPC Parameters

Send to

Receive from

Receive

Call

Send to & Receive

Send to & Receive from

Destination endpoint

Source endpoint

Send registers

Receive registers

Number of map pages

Page range for each map page

Number of send strings

Send string start for each string

Send string size for each string

Receive window for mappings

Number of receive strings

Receive string start for each string

Receive string size for each string

Send timeout

Receive timeout

Send xfer timeout

Receive xfer timeout

IPC result code

Sender endpoint

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

29 17.05.2017

Problem

How to we deal with threads that are

Uncooperative

Malfunctioning

Malicious?

How to prevent an IPC operation from never completing?

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

30 17.05.2017

IPC – API

Timeouts (v2, vX.0)

snd timeout, rcv timeout

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

31 17.05.2017

IPC – API

Timeouts (v2, vX.0)

snd timeout, rcv timeout

snd-pf

specified by sender

Attack through
receiver’s pager

PF

Pager

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

32 17.05.2017

IPC – API

Attack through sender’s
pager

PF

Pager

Timeouts (v2, vX.0)

snd timeout, rcv timeout

snd-pf / rcv-pf

specified by receiver

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

33 17.05.2017

IPC – API

Timeouts (vX.2, v4)

snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

snd to

min (xfer to snd, xfer to rcv)

rcv to

min (xfer to rcv, xfer to snd)

time

wait for send
send message

(xfer)
wait for reply

receive message

(xfer)

(specified by the partner thread)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

34 17.05.2017

Timeout Issues

What timeout values
are typical or
necessary?

How do we encode
timeouts to minimize
space needed to specify
all four values?

Timeout values

∞ (infinite)

Client waiting for a
(trusted) server

0 (zero)

Server responding to a
client

Polling

Specific time

1 us – 610 h (log)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

 2
e
m µs m(10) 0 e(5)

Operating Systems Group

Department of Computer Science

35 17.05.2017

Timeout values

∞ (infinite)

Client waiting for a
(trusted) server

0 (zero)

Server responding to a
client

Polling

Specific time

1 µs – 610 h (log)

Timeout Issues

Does not happen in
practice

Cannot predict how long
a given transfer will
take

SeL4: 1 bit timeout
(zero or infinite)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

36 17.05.2017

Timeouts

EBX

EBP

ESI

EDI

Sender Registers Receiver Registers

receive specifier

destination EAX

EDX

 Timeout values are only

16 bits

 Store send and receive

timeout in single register

snd/rcv timeouts ECX

Send and receive timeouts are the important ones

Xfer timeouts only needed during string transfer

Store xfer timeouts in predefined memory location

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

37 17.05.2017

IPC Parameters

Send to

Receive from

Receive

Call

Send to & Receive

Send to & Receive from

Destination endpoint

Source endpoint

Send registers

Receive registers

Number of map pages

Page range for each map page

Number of send strings

Send string start for each string

Send string size for each string

Receive window for mappings

Number of receive strings

Receive string start for each string

Receive string size for each string

Send timeout

Receive timeout

Send xfer timeout

Receive xfer timeout

IPC result code

Sender endpoint

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

38 17.05.2017

IPC Result

Error conditions
are exceptional

Not common case

No need to optimize for error handling

Bit in received message tag indicates error

Fast check

Exact error code store in predefined memory
location

label flags t u MR0

Message Tag

Error bit

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

39 17.05.2017

Thread ID as sender endpoint

EBX

EBP

ESI

EDI

Sender Registers Receiver Registers

receive specifier

destination EAX

EDX

snd/rcv timeouts ECX

Sender’s thread ID stored in register

from

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

40 17.05.2017

Capability as sender endpoint

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Client Server

IPC gate Call(cap, payload)

Blocking, but no

IPC gate!

Reply capability,

good for one send

Operating Systems Group

Department of Computer Science

41 17.05.2017

IPC Parameters

Send to

Receive from

Receive

Call

Send to & Receive

Send to & Receive from

Destination thread ID

Source thread ID

Send registers

Receive registers

Number of map pages

Page range for each map page

Number of send strings

Send string start for each string

Send string size for each string

Receive window for mappings

Number of receive strings

Receive string start for each string

Receive string size for each string

Send timeout

Receive timeout

Send xfer timeout

Receive xfer timeout

IPC result code

Sender thread ID

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

42 17.05.2017

Virtual Registers

What about message and buffer registers?

Most architectures do not have 64+34 spare registers

What about predefined memory locations?

Must be thread local

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

43 17.05.2017

Virtual Registers

What about message and buffer registers?

Most architectures do not have 64+34 spare registers

What about predefined memory locations?

Must be thread local

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

44 17.05.2017

Preserved by

kernel during

context switch

What are Virtual Registers?

Virtual registers are backed
by either

Physical registers, or

Non-pageable memory

UTCBs hold the memory
backed registers

UTCBs are known in user
and kernel space

UTCBs are thread local

UTCBs cannot be paged

No page faults

Registers always accessible

EBX

ESI

EBP

Physical Registers

UTCB

MR4

MR3

MR63

MR62

MR61

Virtual Registers

MR63

MR62

MR61

MR4

MR3

MR2

MR1

MR0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

45 17.05.2017

Message Registers and UTCB

EDI

Sender Registers Receiver Registers

receive specifier

destination EAX

EDX

snd/rcv timeouts ECX

Some MRs are mapped to physical registers

Kernel will need UTCB pointer anyway – pass it

from

MR1

MR2

MR0

EBX

EBP

ESI

MR1

MR2

MR0

UTCB EDI UTCB

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

46 17.05.2017

Free Up Registers for Temporary Values

Sender Registers Receiver Registers

destination

snd/rcv timeouts

receive specifier

MR1

MR2

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from

MR1

MR2

MR0

UTCB EDI UTCB

Kernel needs registers for temporary values

MR0, MR1 and MR2 are the only values that the kernel may
not need

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

47 17.05.2017

Free Up Registers for Temporary Values

Sender Registers Receiver Registers

destination

snd/rcv timeouts

receive specifier

MR1

MR2

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from

MR1

MR2

MR0

UTCB EDI UTCB

Sysexit instruction requires

ECX = user IP

EDX = user SP

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

48 17.05.2017

IPC Register Encoding

Parameters in registers whenever possible

Make frequent operations simple and fast

destination

snd/rcv timeouts

receive specifier

MR1

MR2

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from

~

~

MR1

MR2

MR0

Sender Registers Receiver Registers

UTCB EDI UTCB

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

49 17.05.2017

Summary

IPC has many parameters

Operation (send, receive, combinations)

Communication partners

Actual message to transfer

IPC Timeouts required

Handle malfunctioning / uncooperative threads

Encode as short as possible

Compact encoding of IPC operation

Send and receive specifier

Nilthread == no operation

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

50 17.05.2017

Summary (2)

Message construction in virtual Message Registers

Untyped words

String items / compound Strings

Map/Grant items

Encoding virtual registers

Backed by memory in UTCB

In physical registers whenever possible

Receive Buffers in virtual Buffer Registers

Acceptor

Receive Strings

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

